Distinguishing hair cell from neural potentials recorded at the round window.
نویسندگان
چکیده
Almost all patients who receive cochlear implants have some acoustic hearing prior to surgery. Electrocochleography (ECoG), or electrophysiological measures of cochlear response to sound, can identify remaining auditory nerve activity that is the basis for this residual hearing and can record potentials from hair cells that are no longer functionally connected to nerve fibers. The ECoG signal is therefore complex, being composed of both hair cell and neural signals. To identify signatures of different sources in the recorded potentials, we collected ECoG data across frequency and intensity from the round window of gerbils before and after treatment with kainic acid, a neurotoxin. Distortions in the recorded waveforms were produced by different sources over different ranges of frequency and intensity. In response to tones at low frequencies and low-to-moderate intensities, the major source of distortion was from neural phase-locking that was sensitive to kainic acid. At high intensities at all frequencies, the distortion was not sensitive to kainic acid and was consistent with asymmetric saturation of the hair cell transducer current. In addition to loss of phase-locking, changes in the envelope after kainic acid treatment indicate that sustained neural firing combines with receptor potentials from hair cells to produce the envelope of the response to tones. These results provide baseline data to interpret comparable recordings from human cochlear implant recipients.
منابع مشابه
Cochlear inner hair cells: effects of transient asphyxia on intracellular potentials.
Intracellular potentials were recorded from inner hair cells in the guinea pig cochlea. Transient asphyxia was induced by interrupting respiration for brief periods. Asphyxia caused a hyperpolarization of the resting membrane potential (resting Em). The hyperpolarization averaged 2.9 mV for 30 s asphyxias and 5.7 mV for 45 s asphyxias. The membrane potential recovered quickly after normal venti...
متن کاملMass Potentials Recorded at the Round Window Enable the Detection of Low Spontaneous Rate Fibers in Gerbil Auditory Nerve
Auditory nerve fibers (ANFs) transmit acoustic information from the sensory hair cells to the cochlear nuclei. In experimental and clinical audiology, probing the whole ANF population remains a difficult task, as the ANFs differ greatly in their threshold and onset response to sound. Thus, low spontaneous rate (SR) fibers, which have rather higher thresholds, delay and larger jitter in their fi...
متن کاملDetection of intracochlear damage during cochlear implant electrode insertion using extracochlear measurements in the gerbil.
OBJECTIVES/HYPOTHESIS An intraoperative monitoring algorithm during cochlear implant electrode insertion could be used to detect trauma and guide electrode placement relative to surviving hair cells. The aim of this report was to assess the feasibility of using extracochlear recording sites to monitor acoustically evoked responses from surviving hair cells and neural elements during implantatio...
متن کاملA Model-Based Approach for Separating the Cochlear Microphonic from the Auditory Nerve Neurophonic in the Ongoing Response Using Electrocochleography
Electrocochleography (ECochG) is a potential clinically valuable technique for predicting speech perception outcomes in cochlear implant (CI) recipients, among other uses. Current analysis is limited by an inability to quantify hair cell and neural contributions which are mixed in the ongoing part of the response to low frequency tones. Here, we used a model based on source properties to accoun...
متن کاملModulation of cochlear afferent response by the lateral olivocochlear system: activation via electrical stimulation of the inferior colliculus.
The olivocochlear (OC) efferent innervation of the mammalian inner ear consists of two subdivisions, medial (MOC) and lateral (LOC), with different peripheral terminations on outer hair cells and cochlear afferent terminals, respectively. The cochlear effects of electrically activating MOC efferents are well known, i.e., response suppression effected by reducing outer hair cells' contribution t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 111 3 شماره
صفحات -
تاریخ انتشار 2014